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Abstract 

That investors should diversify their portfolios is a core principle of modern finance. Yet there are 
some periods where diversification is undesirable. When the portfolio’s main growth engine 
performs well, investors prefer the opposite of diversification. An ideal complement to the 
growth engine would provide diversification when it performs poorly and unification when it 
performs well. Numerous studies have presented evidence of asymmetric correlations between 
assets. Unfortunately, this asymmetry is often of the undesirable variety: it is characterized by 
downside unification and upside diversification. In other words, diversification often disappears 
when it is most needed. In this article we highlight a fundamental flaw in the way that some prior 
studies have measured correlation asymmetry. Because they estimate downside correlations 
from subsamples where both assets perform poorly, they ignore instances of “successful” 
diversification; that is, periods where one asset’s gains offset the other’s losses. We propose 
instead that investors measure what matters: the degree to which a given asset diversifies the 
main growth engine when it underperforms. This approach yields starkly different conclusions, 
particularly for asset pairs with low full sample correlation. In this paper we review correlation 
mathematics, highlight the flaw in prior studies, motivate the correct approach, and present an 
empirical analysis of correlation asymmetry across major asset classes.
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THE MYTH OF DIVERSIFICATION RECONSIDERED  

INTRODUCTION 

The correlation coefficient, the parameter that quantifies the degree to which two 

assets diversify one another, took on new significance in 1952 when Harry Markowitz published 

his landmark article, “Portfolio Selection.” Markowitz formalized the role of diversification 

when he showed how to construct optimal portfolios given the expected returns, standard 

deviations, and correlations of their component assets. Nearly 70 years after it was introduced, 

the mean-variance paradigm has proven surprisingly robust. However, it makes two implicit 

assumptions about diversification that warrant careful consideration. Because it relies on a 

single parameter to approximate the way each pair of assets covary, mean-variance 

optimization assumes that correlations are symmetric on the upside and downside. Moreover, 

the approach assumes that diversification is desirable on the upside as well as the downside. 

The first assumption is occasionally correct but the second assumption never is. 

Diversification is most helpful to investors when the major engine of growth in the 

portfolio, typically domestic equities, performs poorly. They derive benefit from assets whose 

returns offset this poor performance. When the growth engine is performing well, they would 

prefer unification, which is the opposite of diversification. The ideal complement to domestic 

equities would be an asset that is correlated positively when domestic equities are performing 

well and negatively when they are not. Put simply, investors seek diversification on the 

downside and unification on the upside. An adage, which has been credited both to Mark Twain 



 

3 
 

and Robert Frost, defines a banker as “a fellow who lends you his umbrella when the sun is 

shining but wants it back the minute it begins to rain.”2 Diversification often behaves like a 

banker if this characterization is to be believed.  

In this article, we review correlation mathematics and show how to distinguish true 

correlation asymmetry from the illusory correlation shifts that arise as an artifact of how the 

data is partitioned. We then highlight a fundamental flaw in the way that several prior studies 

have measured correlation asymmetry. Because they estimate downside correlations from 

subsamples where both assets perform poorly, they ignore instances of “successful” 

diversification; that is, periods when one asset’s gains offset the other’s losses. We propose 

instead that investors measure what matters: the degree to which a given asset diversifies the 

main growth engine when it underperforms (see, for example, Page and Panariello, 2018). This 

approach yields different conclusions, particularly for asset pairs with low correlation. To 

compare the two approaches, we present an empirical study of correlation asymmetry across 

six major asset classes. Finally, we show how investors can employ full-scale optimization to 

construct portfolios that exploit correlation asymmetry by increasing average correlation on the 

upside when it is beneficial and reducing average correlation on the downside when it is not. 

LITERATURE REVIEW 

Page and Panariello (2018), Page (2020), and many others have argued that despite the 

wide body of published research, many investors still do not fully appreciate the impact of 

correlation asymmetries on portfolio efficiency or, perhaps more importantly, exposure to loss. 
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During left-tail events, diversified portfolios may have greater exposure to loss than more 

concentrated portfolios. Leibowitz and Bova (2009) show that during the 2008 global financial 

crisis, a portfolio diversified across U.S. Equities, U.S. Bonds, Foreign Developed Equities, 

Emerging Market Equities, and Real Estate Investment Trusts saw its equity beta rise from 0.65 

to 0.95, and the portfolio unexpectedly underperformed a simple 60/40 U.S. stock/bond 

portfolio by 9 percent. 

Studies on “tail dependence” (how crashes tend to happen at the same time across 

markets) corroborate these findings. For example, Garcia-Feijóo, Jensen, and Johnson (2012) 

show that when U.S. equity returns are in their bottom 5 percent, non-U.S. equities, 

commodities, and REITs also experience significantly negative returns, beyond what would be 

expected from full-sample correlations. Hartmann et al. (2010) show that currencies co-crash 

more often than would be predicted by a bivariate normal distribution. Similarly, Hartmann, 

Straetmans, and de Vries (2004) estimate that stock markets in G-5 countries are two times 

more likely to co-crash than bond markets. And Van Oordt and Zhou (2012) extend pairwise 

analysis to joint tail dependence across multiple markets and reach similar conclusions.  

These studies ignore asymmetries, however, between the left and right tails. They either 

focus on the left tail or use symmetrical measures of tail dependence, such as the joint t-

distributions. 

Prior research suggests that correlation asymmetries are closely related to the concept 

of risk regimes. Financial markets tend to fluctuate between a low-volatility state and a panic-
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driven, high-volatility state (see, for example, Kritzman, Page, and Turkington, 2012). In fact, 

Ang and Bekaert (2015) directly link the concept of regime shifts to rising left-tail correlations. 

But what causes regime shifts? A partial answer is that macroeconomic fundamentals 

themselves exhibit regime shifts, as documented for inflation and growth data. 

In normal markets, differences in fundamentals drive diversification across risk assets. 

During panics, however, investors often “sell risk” irrespective of differences in fundamentals. 

Huang, Rossi, and Wang (2015), for example, show that sentiment is a common factor that 

drives both equity and credit-spread returns—beyond the effects of default risk, liquidity, and 

macro variables—and suggest that sentiment often spills over from equities to the credit 

markets. 

Related studies in the field of psychology suggest that to react more strongly to bad 

news than good news is human nature. Fear is more contagious than optimism. In a paper titled 

“Bad Is Stronger Than Good,” Baumeister, Bratslavsky, Finkenauer, and Vohs (2001) explain that 

“Bad information is processed more thoroughly than good. . . . From our perspective, it is 

evolutionarily adaptive for bad to be stronger than good.” 

 The literature is divided, however, on the correct approach to measuring correlation 

asymmetry. As we will explain further, some studies—such as Longin and Solnik (2001), Chua et 

al. (2009), and Ang and Chen (2002)—estimate downside correlations by conditioning on the 

returns of both assets simultaneously. Others, such as Page and Panariello (2018), Gulko (2002), 

and Garcia-Feijóo, Jensen and Johnson (2012), condition on the returns of a single asset. In this 
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paper we show why the former approach is flawed and argue that the latter approach results in 

a more useful measure of correlation asymmetry. 

CORRELATION MATHEMATICS 

Market participants often remark that “correlations go to one” when the markets are in 

turmoil. But such differences do not necessarily prove that the bivariate return distribution is 

non-normal or that returns emanate from more than one regime. Subsample correlations 

change naturally as an artifact of how we partition the sample, even if the underlying 

distribution is normal. We must therefore account for these effects to detect correlation 

asymmetry properly. 

Longin and Solnik (2001) introduce the notion of exceedance correlation, which they define 

as the correlation between two assets when the returns of both assets are either above or 

below a given threshold. For example, they might estimate the exceedance correlation for U.S. 

and Foreign Equities from the subsample of returns where both asset classes suffer losses of 10 

percent or more. Chua et al. (2009) apply the same approach to a variety of asset classes, 

country equity markets, hedge fund styles and fixed income segments. They find pervasive 

evidence of correlation asymmetry that is unfavorable to investors. However, this specification 

of exceedance correlation suffers from a fundamental flaw. It misses important instances of 

diversification because it ignores outcomes where, in the previous example, U.S. Equities 

perform poorly but Foreign Equities perform well.  
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Exhibit 1: Return Observations for Two Assets 

 

 

Exhibit 1 presents a simple illustration of this point. We use Monte Carlo simulation to 

generate 500 returns for assets X and Y that conform to a bivariate normal distribution with 

identical means equal to zero, standard deviations equal to 20 percent, and a correlation of 

0.50. Imagine that asset X is the main growth driver in the portfolio and that we have selected 

asset Y to diversify it. When asset X is performing well, we would prefer that asset Y follow suit. 

These outcomes reflect desirable upside unification and are associated with the upper right 

quadrant of Exhibit 1. On the other hand, when asset X is suffering losses, we would prefer that 

asset Y decouple from asset X to offset those losses. These outcomes reflect desirable downside 

decoupling of asset Y and are associated with the upper left quadrant of Exhibit 1. These are 

the periods where asset Y successfully diversifies asset X. Finally, the lower left quadrant of 
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Exhibit 1 is associated with very unpleasant outcomes where asset X underperforms and asset Y 

fails to diversify it.  

It is evident from this illustration that we must consider the entire left side of the 

distribution to measure properly the diversification potential of asset Y with respect to asset X. 

It would not be informative to focus only on the lower left quadrant because these are the 

instances where diversification has already failed. Yet this is the way several other studies have 

measured downside correlations. 

 

Exhibit 2: Subsamples of Returns for Assets X and Y Where One or Both Assets Underperform 

 

 

Exhibit 2 presents a comparison of these two approaches for the bivariate distribution 

presented in Exhibit 1 with a threshold value of zero percent. The left panel shows the 

subsample where both assets’ returns are below the threshold; this is the approach taken by 

Longin and Solnik (2001),Chua et al. (2009), Ang and Chen (2002), and others. We submit that 

investors should instead estimate downside correlations from the subsample of returns shown 
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in the right panel, where the return of asset X is below a particular threshold, regardless of the 

return of asset Y. This approach introduces additional complexity because we are now able to 

estimate two downside correlation coefficients for each pair of assets, one conditioned on the 

returns of each asset. This doubles the number of correlation coefficients we must potentially 

consider. But it is reasonable for investors to focus their attention on a few of the portfolio’s 

main growth engines, the assets that contribute the largest share of portfolio risk, as the 

conditioning assets.  

The upside and downside correlations between assets X and Y, conditioned on the returns 

of asset X, are given by Equation 1. 

 

𝜌(𝜃) = &𝑐𝑜𝑟𝑟
(𝑥, 𝑦|𝑥 > 𝜃)	𝑖𝑓	𝜃 > 0

𝑐𝑜𝑟𝑟(𝑥, 𝑦|𝑥 < 𝜃)	𝑖𝑓	𝜃 < 0        (1) 

 

where ρ is the upside or downside correlation, X and Y are observed returns for each asset, and 

θ is the threshold applied to the returns of asset X. In practice, we express θ in units of standard 

deviation above or below the mean of asset X. So, if we set θ equal to +1.0 we would evaluate 

the top portion of Equation 1 and estimate correlation for all observations where the return of 

asset X is one standard deviation or more above its mean. If we set θ equal to -1.5 we would 

evaluate the bottom portion of Equation 1 which focuses on the subsample of returns where 

asset X is 1.5 standard deviations or more below its mean. In the unique case where θ equals 

zero, we evaluate both equations to estimate an upside correlation (where returns are above 

the mean) and a downside correlation (where returns are below the mean). Because the 

bivariate normal distribution is symmetric, the expected upside and downside correlations will 
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be identical in this instance and for any instance where the thresholds have the same absolute 

value.  

Given Equation 1 and setting θ equal to zero, the upside and downside correlation 

associated with the bivariate distribution defined above is 0.33 as opposed to 0.50 for the full 

sample. If we modify Equation 1 to apply the threshold to both assets’ returns, the upside and 

downside correlation is 0.27. Were these estimates derived from real data rather than 

simulated data, we might be tempted to conclude that diversification increases in the extremes 

for this pair of assets. But this interpretation would be incorrect. These differences are an 

artifact of conditional correlation math and do not indicate any change in the relationship 

between the two assets in the tails. Exhibit 3 shows how the expected upside and downside 

correlations change as a function of threshold value (θ). 
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Exhibit 3: Conditional Correlations for the Bivariate Normal Distribution as a Function of θ 

 

 

Exhibit 3 reveals that the conditional correlations decrease as the absolute value of the 

threshold increases. At a threshold value of positive or negative 20 percent, corresponding to 

one standard deviation, the upside and downside correlation is 0.25 if we condition on asset x. 

It is 0.18 if we condition on both assets. Exhibit 3 also reveals that, all else equal, we should 

expect a higher correlation by construction when we condition on one asset than when we 

condition on both. When we estimate upside and downside correlations from empirical data, 

we must compare them to these expected values. Only if we observe material differences 

between the empirical and expected correlation profiles can we conclude that the observed 

correlation asymmetry is a symptom either of a non-normal bivariate distribution or multiple 
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distributions. In these instances, investors should consider adjusting explicitly for correlation 

asymmetry when they construct portfolios or estimate downside risk exposure. 

Figure 4 shows the empirical correlation profile for U.S. Equities and Foreign Developed 

Equities based on monthly returns starting in January 1976 and ending in December 2019.3 It 

also shows the expected correlation profile for the corresponding bivariate normal distribution. 

These two asset classes have a full sample correlation of 0.66. Because the two asset classes 

have different volatilities, we standardize each return series by subtracting the mean from each 

monthly observation and dividing this quantity by the standard deviation. Figure 4A shows the 

correlation profile where the threshold is applied to both assets. Figure 4B shows results 

conditioned on U.S. Equity only, as given by Equation 1. 

 

Exhibit 4A: Correlation Profile for U.S. and Foreign Equity, Conditioned on Both Assets 
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Exhibit 4B: Correlation Profile for U.S. and Foreign Equity, Conditioned on U.S. Equity Only 

  

 

We can draw two conclusions from Figure 4. First, in both cases, the empirical downside 

correlation is higher than implied by the bivariate normal distribution. In the right tail, we 

observe the opposite. This correlation profile represents downside unification and upside 

diversification and is therefore undesirable to investors. Second, we observe that the two 

correlation profiles are quite similar: it does not appear to make much difference whether we 

condition on the returns of one asset or both assets. This is because the two assets have a 

relatively high correlation to begin with. As a result, most observations are in the lower left and 

upper right quadrants anyway and we therefore retain most of them when we impose the 

double condition. 

Exhibit 5 presents the analogous results for U.S. Equity and U.S. Corporate Bonds which 

have a relatively low full sample correlation. In this case, we observe that the two methods lead 

us to entirely different conclusions. The correct approach, shown in Exhibit 5B, shows that U.S. 
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Corporate Bonds offer some desirable downside decoupling. The incorrect approach shown in 

Exhibit 5A suggests that the two asset classes have higher-than-normal correlation on the 

downside. 

 

Exhibit 5A: Correlation Profile for U.S. Equity and Corporate Bonds, Conditioned on Both Assets 

 

Exhibit 5B: Correlation Profile for U.S. Equity and Corporate Bonds, Conditioned on U.S. Equity 
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We present this example because it highlights how the single and double conditioning 

approaches can lead to different conclusions, not to suggest that U.S. Corporate Bonds impart 

the most desirable correlation asymmetry to U.S. Equity. That designation belongs to Treasury 

Bonds. Corporate Bond returns have two components: a duration component and a credit 

component. The former tends to diversify equity exposure whereas the latter does not. During 

some periods, the duration component overpowers the credit component, enabling Corporate 

Bonds to decouple from equities on the downside. Yet the double conditioning approach is 

blind to these periods, which are akin to outcomes in the upper left quadrant of Exhibit 1. 

Double conditioning therefore produces higher downside correlation estimates by design, as is 

evident from Exhibit 5A. The single conditioning approach captures the full left side of the 

distribution and therefore produces a lower downside correlation estimate, as shown in Exhibit 

5B. 

In the next section, we extend our analysis of correlation asymmetry to present a 

comprehensive empirical study among six major asset classes. To do so concisely, we introduce 

a summary metric to capture the degree of correlation asymmetry for each asset pair. The 

metric we choose is the average difference between the empirical and expected downside 

correlations across threshold values for down markets less the analogous quantity for up 

markets. We calculate these average differences for up and down markets as given by Equation 

2 as proposed by Chua et al. (2009).  
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𝜇!" =
#
"
∑ 6𝜌$%&(𝜃') − 𝜌$(&(𝜃')8, 𝑓𝑜𝑟	𝑖 < 0"
')#

𝜇*& =
#
"
∑ 6𝜌$%&(𝜃') − 𝜌$(&(𝜃')8, 𝑓𝑜𝑟	𝑖 > 0"
')#

        (2) 

The terms μdn and μup are the average differences for up and down markets, respectively, 

ρemp(θi ) is the empirical upside or downside correlation at threshold θi, and ρexp(θi ) is the 

corresponding expected upside or downside correlation for a bivariate normal distribution. For 

both up and down markets we iterate through n thresholds in equally spaced by intervals of 0.1 

standard deviations. We stop iterating when there are fewer than 30 observations beyond the 

threshold. We then take the difference between the upside and downside averages given by 

Equation 2 (μdn - μup) to arrive at a summary metric for correlation asymmetry. Positive values 

for this metric indicate the presence of an undesirable correlation profile (net downside 

unification or upside diversification). Negative values indicate a desirable profile (downside 

decoupling or upside unification). For U.S. and Foreign Developed Equities, this average 

difference is equal to 0.32, reflecting an undesirable correlation profile. 

 

CORRELATION ASYMMETRY BETWEEN ASSET CLASSES 

Research has shown that most asset universes offer less diversification during down markets 

than up markets, including country equity markets, global industries, individual stocks, hedge 

funds and international bonds. The correlation between stocks and bonds is often an exception 

to this pattern. Kritzman et al. (2001) find that stock-bond correlations within countries 

decrease during periods of market turbulence. In this section, we build on this finding to 

analyze the pervasiveness of correlation asymmetry across the six major asset classes shown in 
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Exhibit 6. Exhibit 6 shows the full sample return and standard deviation of each asset class and 

Exhibit 7 shows the full sample correlation matrix.4 

 

Exhibit 6: Asset Class Returns and Standard Deviations 

 

 

Exhibit 7: Asset Class Correlations 

 

To measure correlation asymmetry for each pair of asset classes, we report in Exhibit 8 

the summary metric (μdn - μup) as given by Equation 2. Panel A reports this summary metric 

following the double conditioning specification. Because the threshold is applied to both assets 

Asset Class Return (% p.a.)
Standard 

Devitaion (% p.a.)

U.S. Equities 12.66 14.54
Foreign Developed Equities 11.10 16.38
Emerging Market Equities 13.51 22.36
Treasury Bonds 7.16 5.20
U.S. Corporate Bonds 8.15 6.61
Commodities 6.26 19.06
Annualized return is the arithmetic return of each asset class from January 1976 
through December 2019, with the exception of Emerging Markets for which data 
begins in January 1988. Standard deviation is the annualized standard deviation of 
monthly returns over the same period. 

a b c d e

a U.S. Equities
b Foreign Developed Equities 0.67
c Emerging Market Equities 0.66 0.72
d Treasury Bonds 0.08 0.02 -0.15
e U.S. Corporate Bonds 0.30 0.24 0.22 0.86
f Commodities 0.18 0.30 0.29 -0.09 0.02

Asset Class

Correlation coefficients are derived from the full sample of monthly returns from January 1976 through 
December 2019. Emerging Markets correlations are pair-wise and derived from the period starting in 
January 1988 when data became available.
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simultaneously, this matrix is symmetric. Panel B reports the summary metric for each asset 

class pair following our favored single conditioning approach. In this case, the matrix is not 

symmetric. The values presented in this panel capture the correlation asymmetry between the 

row asset and column asset when we condition on the returns of the row asset. Panel C reports 

the differences between Panels A and B. 
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Exhibit 8: Correlation Asymmetry Among Major Asset Classes 

 

 

Panel A:  Excess Downside  Minus Excess Upside Correlation, Conditioned on Both Assets' Returns

a b c d e f

a U.S. Equities 0.34 0.35 0.00 0.14 0.39
b Foreign Developed Equities 0.34 0.31 -0.17 0.19 0.35
c Emerging Market Equities 0.35 0.31 -0.17 0.24 0.10
d Treasury Bonds 0.00 -0.17 -0.17 -0.14 -0.04
e U.S. Corporate Bonds 0.14 0.19 0.24 -0.14 0.17
f Commodities 0.39 0.35 0.10 -0.04 0.17

Panel B: Excess Downside Minus Excess Upside Correlation, Conditioned on Row Asset Only

a b c d e f

a U.S. Equities 0.32 0.32 -0.35 -0.19 0.27
b Foreign Developed Equities 0.35 0.37 -0.25 0.07 0.31
c Emerging Market Equities 0.29 0.31 -0.11 0.10 0.05
d Treasury Bonds 0.02 -0.08 0.05 -0.19 0.20
e U.S. Corporate Bonds 0.12 0.07 0.27 -0.23 0.37
f Commodities 0.47 0.56 0.46 -0.01 0.21

Panel C: Difference Between Panels A and B

a b c d e f

a U.S. Equities -0.02 -0.03 -0.35 -0.33 -0.12
b Foreign Developed Equities 0.01 0.06 -0.08 -0.12 -0.04
c Emerging Market Equities -0.06 0.00 0.06 -0.14 -0.05
d Treasury Bonds 0.02 0.09 0.23 -0.05 0.24
e U.S. Corporate Bonds -0.02 -0.13 0.03 -0.09 0.20
f Commodities 0.08 0.20 0.36 0.02 0.05

We estimate the empirica l and expected correlation profi le for each asset pair in the same manner as in
Exhibi ts 4B and 5B. We estimate the empirica l correlation profi le us ing data starting in January 1976 and
ending in December 2019, except for Emerging Market Equities which start in January 1988. Emerging Market
Equities va lues are estimated pairwise over this time period with each other asset class . We only estimate
values for thresholds where at least 30 observations are avai lable above or below the threshold. We then
average across  a l l  thresholds  to estimate the excess  ups ide and downs ide correlation. 
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We draw several conclusions from Exhibit 8:  

• When paired with U.S. Equities as the conditioning asset, Panel B reveals that Emerging 

Market Equities, Foreign Developed Equities and Commodities are less desirable 

complements. They exhibit correlation asymmetry that is unfavorable to investors. On 

the other hand, Treasury and Corporate Bonds exhibit a favorable correlation profile. 

• When paired with Treasury Bonds as the conditioning asset, Panel B shows that 

Corporate Bonds offer the most favorable correlation profile and Commodities the least. 

• Treasury Bonds are the only asset that is universally favorable as a complement. Panel B 

shows that Treasury Bonds impart beneficial asymmetry when returns are conditioned 

on any other asset class, although the benefit imparted to Commodities is negligible. 

Having said that, interest rates are near zero as we write this article in February 2021. 

We therefore cannot expect Treasury Bonds to rally as much during equity selloffs as 

they have in the past. 

• Because it ignores observations in the upper left quadrant, the joint conditioning 

approach employed in Panel A understates the favorable correlation profile that 

Treasury and Corporate Bonds impart to the three equity asset classes. It also overstates 

the diversification benefits that Commodities impart to fixed income asset classes. 
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IMPLICATIONS FOR PORTFOLIO CONSTRUCTION 

Having demonstrated that correlation asymmetry is prevalent among major asset classes, we 

now turn to the question of what investors should do about it. There are two ways to account 

for correlation asymmetry in portfolio management. Investors can: 

1. reallocate their portfolios dynamically in anticipation of regime shifts, increasing their 

exposure to safe-haven assets that offer downside diversification when they expect 

conditions to deteriorate (see, for example, Kritzman, Page, and Turkington, 2012), or 

2. place greater weight on downside correlations when setting policy weights, thereby 

constructing a static portfolio that is more resilient to downturns. 

Investors who pursue the first approach must monitor market conditions and predict which 

correlations are most likely to prevail in the future. On the other hand, investors who pursue 

the second approach seek to prepare rather than predict. They build portfolios as one might 

design a house on the seashore: for routine use during balmy conditions but sufficiently 

resilient to weather a hurricane if one should strike. This approach requires that the designer 

strike an optimal balance between resilience to storms and utility during fair weather 

conditions. A windowless, concrete bunker would provide maximum protection but would not 

be particularly appealing on a sunny day. We propose that investors strike the analogous 

balance when constructing portfolios. 

There are several ways investors can construct portfolios that account for correlation 

asymmetry. One is to perform mean-variance optimization using only the downside, rather 

than full sample, correlations. However, this approach would be optimal only during extreme 
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conditions. Another would be to blend the full sample correlations with the downside 

correlations, but this leaves the critical choice of the blending ratio. Furthermore, in a portfolio 

with more than two assets, both methods require that the investor select a subset of the assets 

on whose returns the correlations will be conditioned. 

We propose instead that investors use full-scale optimization to account implicitly for 

asymmetric correlations a well as other peculiarities of the multivariate return distribution. Full-

scale optimization, which was introduced by Cremers, Kritzman and Page (2005), identifies the 

optimal portfolio for any return distribution and any specification of investor preferences. 

Whereas mean-variance optimization yields an approximation of the in-sample solution if the 

return distribution is elliptical and investors have preferences that can be described by mean 

and variance, full-scale optimization yields the true optimal portfolio for a given return sample. 

Rather than relying on parameters like means and covariances to approximate the distribution, 

full-scale optimization relies on numerical search algorithms to solve for the weights that 

maximize the given utility function precisely. To demonstrate how this technique accounts for 

correlation asymmetries, we employ a kinked utility function with the kink located at a 25 

percent loss. This utility function is given by Equation 3. 

𝑈+'"+$!(𝑅) = &
ln	(1 + 𝑅), 𝑓𝑜𝑟	𝑟	 ≥ 	𝑘

ln	(1 + 𝑅) − 𝜔(𝑘 − 𝑅), 𝑓𝑜𝑟	𝑟 < 𝑘      (3) 

The term Ukinked(R) is expected utility, R is the return of the portfolio, k is the location of the kink 

(in this case, negative 25 percent) and ω is the slope of the linear utility function below the link. 

With this utility function, investor satisfaction drops precipitously when returns fall below the 
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kink. When returns fall above the kink, investor satisfaction conforms to a log-wealth utility 

function. This utility function is designed to express a strong aversion to losses below the kink. 

To determine whether full-scale optimization addresses correlation asymmetry 

effectively, we need a way to measure the degree of correlation asymmetry in a portfolio and 

whether it is of the desirable or undesirable variety. For this purpose, we define the metric ξ in 

Equation 4: 

𝜉 = ∑ ∑ w'w,D𝜇',,!" − 𝜇',,
*&E"

,)#
"
')#         (4) 

where n is the number of assets, wi is the weight of asset i in the portfolio, wj is the weight of 

asset j in the portfolio, and (𝜇!,#$% − 𝜇!,#
&') is the correlation asymmetry summary metric for 

assets i and j given by Equation 2, conditioned on asset i. Larger values of ξ indicate that the 

portfolio has excess downside correlation which is undesirable. Of course, investors do not 

derive utility by reducing correlation asymmetry; they derive utility by growing wealth. Full-

scale optimization does not maximize favorable correlation asymmetry directly, but as we will 

demonstrate, utility is well served by pairing assets that unify on the upside and diversify on the 

downside. Mean-variance optimization cannot account for these kinds of asymmetries because 

it implicitly assumes that correlations are symmetric. 

Exhibit 9 shows a full-scale optimal portfolio and a corresponding mean-variance 

optimal portfolio with the same expected return of 7 percent. It also shows the degree of 

undesirable correlation asymmetry for each portfolio, ξ, as well as the utility of each portfolio 

as given by the kinked utility function. 
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Exhibit 9: Mean-Variance and Full-Scale Optimal Portfolios 

 

 

Exhibit 9 reveals that, as we would expect, the mean-variance optimal portfolio has a lower 

standard deviation than the full-scale optimal portfolio. However, the mean-variance portfolio 

suffers a larger average loss when its returns fall below the threshold of negative 25 percent. 

The full-scale portfolio is able to achieve this reduction in downside exposure by reducing 

undesirable correlation asymmetry that is “invisible” to the mean-variance utility function. The 

Expected 
Return

Standard 
Deviation

Full-Scale 
Optimal 
Portfolio

Mean-
Variance 
Optimal 
Portfolio

US Equities 7.5% 14.1% 64.3% 42.3%
Foreign Developed Equities 7.8% 16.4% 9.7% 16.6%
Emerging Market Equities 8.5% 22.4% 4.1% 10.0%
Treasury Bonds 4.9% 4.4% 21.5% 12.4%
U.S. Corporate Bonds 5.3% 4.9% 0.0% 10.8%
Commodities 6.5% 20.4% 0.5% 7.8%

Expected Return 7.0% 7.0%
Standard Deviation 10.9% 10.6%

Likelihood of Loss > 25% 0.2% 0.2%
Average Loss > 25% 27% 30%
Correlation Asymmetry (ξ) 4% 15%

Expected returns are i l lustrative views. Standard deviations are annual ized and estimated from monthly
data over the period January 1988 through December 2019. We solve for the mean-variance optimal
portfol io us ing these inputs as wel l as correlations estimated over the same period as standard
deviations . We solve for the ful l -sca le optimal portfol io us ing a non-l inear search function to maximize
the kinked uti l i ty function given by Equation 3. For k and ω we select va lues of -25%, and 100,
respectively, a l though the results are robust to reasonable variation in these parameters . We constra in
expected return to equal 7 percent in both optimizations . We apply the ful l -sca le a lgori thm to a
s imulated sample cons is ting of 1,000 years of return observations for each asset class . We construct
each year in this sample by drawing 12 monthly multivariate return observations at random, with
replacement, from the empirica l sample (1988-2019). We then re-mean the 1,000 year sample to reflect
our expected returns . Likel ihood of loss  i s  the frequency of portfol io returns  fa l l ing below the k va lue of -
25% in the 1,000-year s imulated sample. Average loss is the average portfol io return for the subsample
of portfol io returns that fa l l below this threshold. Correlation asymmetry reflects the weighted average
summary metric, as given by Equation 2, for each portfol io. Correlation asymmetries are calculated over
the period 1988-2019.
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changes in weights are intuitive. The full-scale optimal portfolio has larger allocations to U.S. 

Equities and Treasury Bonds, the pair with the most desirable correlation asymmetry profile 

during the sample period. It holds almost no allocation to Commodities or Corporate Bonds, the 

pair with the least desirable correlation asymmetry profile during the sample period. 

 

SUMMARY 

In this article we debunk the fallacy that diversification is always beneficial to investors and that 

correlations are symmetric on the upside and downside. While diversification is desirable on 

the downside, investors would prefer that all assets rise in concert and should seek unification 

on the upside. When measuring conditional correlations, it is important to adjust for the 

correlation changes that arise naturally as an artifact of correlation math. To detect correlation 

asymmetry properly, we must 1) condition returns on a single asset of interest rather than both 

assets and 2) compare the empirical upside and downside correlations to the values we would 

expect if returns emanated from a single, bivariate normal distribution. Unfortunately, when 

we make these adjustments, we conclude that most pairs of asset classes exhibit unfavorable 

correlation profiles. Diversification often disappears on the downside when it is most needed. 

And, like an unwieldy umbrella on a sunny day, it is often present on the upside when it imparts 

no benefit. Finally, we show how investors can use full-scale optimization to construct 

portfolios that account explicitly for asymmetric correlation profiles and other non-normal 

features of the distribution to maximize expected utility. 
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NOTES 

The material presented is for informational purposes only. The views expressed in the material 
are the views of the authors and are subject to change based on market and other conditions 
and factors; moreover, they do not necessarily represent the official views of Windham Capital 
Management, T. Rowe Price, State Street Corporation®, State Street Global Markets®, or any of 
their affiliates.  

 

REFERENCES 

Ang, A., and J. Chen. 2002. “Asymmetric Correlations of Equity Portfolios.” Journal of Financial 
Economics, Vol. 63, No. 3: 443–94. 

Ang, A., and G. Bekaert. 2015. “International Asset Allocation with Regime Shifts.” Review of 
Financial Studies, Vol. 15, No. 4: 1137–87 https://doi.org/10.1093/rfs/15.4.1137.  

Baumeister, R.F., E. Bratslavsky, C. Finkenauer and K.D. Vohs. 2001. “Bad Is Stronger Than 
Good.” Review of General Psychology, Vol. 5, No. 4: 323–70 https://doi.org/10.1037/1089-
2680.5.4.323.  

Chua, D., M. Kritzman and S. Page. 2009. “The Myth of Diversification,” The Journal of Portfolio 
Management, Vol. 36, No. 1 (Fall).  

Cremers J-H., M. Kritzman and S. Page. 2005. “Optimal Hedge Fund Allocations,” The Journal of 
Portfolio Management, Vol. 31, No. 3 (Spring). 

Garcia-Feijóo, L., G.R. Jensen and R.R. Johnson. 2012. “The Effectiveness of Asset Classes in 
Hedging Risk.” Journal of Portfolio Management, Vol. 38, No. 3: 40–55 
https://doi.org/10.3905/jpm.2012.38.3.040. 

Hartmann, P., S. Straetmans and C.G. de Vries. 2010. “Heavy Tails and Currency Crises.” Journal 
of Empirical Finance, Vol. 17, No. 2: 241–54 https://doi.org/10.1016/j.jempfin.2009.09.004.  

Hartmann, P., S. Straetmans and C.G. de Vries. 2004. “Asset Market Linkages in Crisis Periods.” 
Review of Economics and Statistics, Vol. 86, No. 1: 313–26 
https://doi.org/10.1162/003465304323023831.  



 

27 
 

Huang, J.-Z., M. Rossi and Y. Wang. 2015. “Sentiment and Corporate Bond Valuations before 
and after the Onset of the Credit Crisis.” Journal of Fixed Income, Vol. 25, No. 1: 34–57 
https://doi.org/10.3905/jfi.2015.25.1.034. 

Kritzman, M., K. Lowry and A. Van Royen. 2001. “Risk, Regimes, and Overconfidence,” The 
Journal of Derivatives, Vol. 8, No. 3 (Spring).  

Kritzman, M., S. Page and D. Turkington. 2012. “Regime Shifts: Implications for Dynamic 
Strategies.” Financial Analysts Journal, Vol. 68, No. 3 (May/June).  

Leibowitz, M.L., and A. Bova. 2009. “Diversification Performance and Stress-Betas.” Journal of 
Portfolio Management, Vol. 35, No. 3: 41–47 https://doi.org/10.3905/JPM.2009.35.3.041.  

Longin F., and B. Solnik. 2001. “Extreme Correlation of International Equity Markets,” The 
Journal of Finance, Vol. 56, No. 2 (April). 

Markowitz, H. 1952. “Portfolio Selection,” The Journal of Finance, Vol. 7, No. 1 (March). 

Page, S. “Beyond Diversification: What Every Investor Needs to know About Asset Allocation” 
McGraw Hill, 2020. 

Page, S. and R. A. Panariello. 2018. “When Diversification Fails.” Financial Analysts Journal, Vol. 
74, No. 3, 19-32, DOI: 10.2469/faj.v74.n3.3. 

Van Oordt, M.R.C., and C. Zhou. 2012. “The Simple Econometrics of Tail Dependence.” 
Economics Letters, Vol. 116, No. 3: 371–73 https://doi.org/10.1016/j.econlet.2012.04.0 

 
1 William Kinlaw and David Turkington are senior researchers at State Street Associates, the research arm of State 
Street Global Markets. Mark Kritzman is a founding partner of State Street Associates, CEO of Windham Capital 
Management, and faculty member at MIT’s Sloan School of Management. Sébastien Page is Head of Global Multi-
Asset at T. Rowe Price. The corresponding author is William Kinlaw who can be reached at 
wbkinlaw@statestreet.com. 
2 For more on this quote see https://quoteinvestigator.com/2011/04/07/banker-umbrella/. 
3 We compute the conditional correlation for all thresholds where we have at least 30 observations. 
4 We use the following benchmark indices as a proxies for each asset class. For U.S. Equities we use the S&P 500 
Total Return Index. For Foreign Developed Equities we use the MSCI World ex U.S. Total Return Index. For 
Emerging Market Equities we use the MSCI Emerging Markets Total Return Index. For Treasury Bonds we use the 
Barclays U.S. Treasury Total Return Index. For U.S. Corporate Bonds we use the Barclays U.S. Credit Total Return 
Index. For Commodities we use the S&P GSCI Commodity Total Return Index. We procured all data from 
Datastream. 


	SSRN COVER PAGE
	The Myth of Diversification Reconsidered 20210203



